The Bergman Popov's subgradient extragradient ALGORITHM FOR STRONGLY PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

B. Zeghad ${ }^{1}$
${ }^{1}$ Ferhat Abbas University, Setif-1, Algeria. bochra.zeghad@univ-setif.dz

Consider the equilibrium problem $E P(f ; C)$ as follows

$$
\text { find } x \in C \text { such that } f(x, y) \geq 0, \forall y \in C \text {, }
$$

where C is a nonempty, closed and convex subset of a real linear space $E, f: C \times C \rightarrow \mathbb{R}$ be a bifunction. We denote by E^{*} the dual of E. Muu and Oettli are first one introduced the term of the equilibrium problem in 1992 ([2]) and has been extended by Blum and Oettli ([1]). The problems $E P(f ; C)$ have a number of interesting explanations and are related to many branches of pure and applied mathematics : variational inequality and fixed point problems, nonlinear optimization. The problems $E P(f ; C)$ is also considered as a generalization of the convex minimization problems. The special case, if $f(x, y)=<A x, y-x>$, where $A: E \rightarrow E^{*}$, the equilibrium problem is just the variational inequality problem $\operatorname{VI}(A ; C)$ which gives by

$$
\text { find } x \in C \text { such that }<A x, y-x>\geq 0, \forall y \in C
$$

Let $h: E \rightarrow \mathbb{R}$ be a convex differentiable. The Bregman distance is the bifunction

$$
D_{h}: \operatorname{dom}(f) \times \operatorname{int}(\operatorname{dom}(h)) \longrightarrow[0,+\infty),
$$

which is defined by

$$
D_{h}(x, y):=h(x)-h(y)-<\nabla h(y), x-y>.
$$

Here $h: E \rightarrow \mathbb{R}$ is differentiable, continuous and strongly convex with constant $\sigma>0$, i.e.,

$$
h(x)-h(y) \geq\langle\nabla h(y), y-x\rangle+\frac{\sigma}{2}\|x-y\|^{2} .
$$

In general, the Bregman distance is not symmetric and the triangle inequality does not hold. However, it is also considered a generalization of some well-known distances. It is also called the three point identity: for any $x \in \operatorname{dom}(f)$ and $y, z \in \operatorname{int}(\operatorname{dom}(f))$

$$
D_{h}(x, y)+D_{h}(y, z)-D_{h}(x, z)=<\nabla h(z)-\nabla h(y), x-y>
$$

From the strong convexity of h, we have

$$
D_{h}(x, y) \geq \frac{\sigma}{2}\|x-y\|^{2}, \quad \forall x, y \in C .
$$

In this talk, by using Bergman distance, we introduce iterative extension of the Popov's subgradient extragradient method for solving strongly pseudomonotone equilibrium problems. Let the bifunction $f: E \times E \rightarrow \mathbb{R}$ satisfies the following conditions
(C1) $f(x, x)=0$, for all $x \in C$ and f is strongly pseudomonotone on C, i.e.,

$$
f(x, y) \geq 0 \Rightarrow f(y, x) \leq-\gamma\|x-y\|^{2}, \quad \forall x, y \in C
$$

(C2) f is Bregman-Lipschitz-type condition, i.e., there exist two positive constants c_{1}, c_{2}, such that

$$
f(x, y)+f(y, z) \geq f(x, z)-c_{1} D_{h}(y, x)-c_{2} D_{h}(z, y), \quad \forall x, y, z \in C
$$

(C3) $f(x, \cdot)$ is convex and subdifferentiable on E for each fixed $x \in E$. Using the concept of Bregman distance, we introduce our method.

Algorithm 1. (The Bergman Popov's subgradient extragradient method for SPEP)
Choose $x_{0}, y_{0} \in H$, and a sequence $\left\{\lambda_{n}\right\}$ satisfying the following conditions
(Cd1): $\lim _{n \rightarrow+\infty} \lambda_{n}=0 \quad$ and (Cd2): $\sum_{n=1}^{+\infty} \lambda_{n}=+\infty$.
Set
$\left\{\begin{array}{l}x_{1}=\underset{y \in C}{\arg \min }\left\{\lambda_{0} f\left(y_{0}, y\right)+D_{h}\left(y, x_{0}\right)\right\} \\ y_{1}=\underset{y \in C}{\arg \min }\left\{\lambda_{1} f\left(y_{0}, y\right)+D_{h}\left(y, y_{0}\right)\right\}\end{array}\right.$
Iterative steps: Given x_{n}, y_{n-1}, and y_{n} for $n \geq 1$. Construct a half-space

$$
H_{n}=\left\{z \in H:\left\langle\nabla h\left(x_{n}\right)-\lambda_{n} v_{n-1}-\nabla h\left(y_{n}\right), z-y_{n}\right\rangle \leq 0\right\},
$$

where $v_{n-1} \in \partial_{2} f\left(y_{n-1}, y_{n}\right)$.
Step 1: Compute

$$
x_{n+1}=\underset{y \in H_{n}}{\arg \min }\left\{\lambda_{n} f\left(y_{n}, y\right)+D_{h}\left(y, x_{n}\right)\right\},
$$

Step 2: Compute

$$
y_{n+1}=\underset{y \in C}{\arg \min }\left\{\lambda_{n+1} f\left(y_{n}, y\right)+D_{h}\left(y, x_{n+1}\right)\right\} .
$$

If $x_{n+1}=x_{n}=y_{n}$, then we stop. Otherwise, set $n:=n+1$ and go to the Iterative steps.
Lemma 1. For all $p^{*} \in E P(f, \mathbb{C})$, the following inequality holds
$D_{h}\left(p^{*}, x_{n+1}\right) \leq D_{h}\left(p^{*}, w_{n}\right)-\left(1+\lambda_{n} c_{2}\right) D_{h}\left(z_{n}, y_{n}\right)-D_{h}\left(y_{n}, w_{n}\right)-c_{1} \lambda_{n} D_{h}\left(y_{n}, y_{n-1}\right)-\gamma \lambda_{n}\left\|y_{n}-p^{*}\right\|^{2}$.
Theorem 1. Let $f: H \times H \rightarrow \mathbb{R}$ be a bifunction satisfying the conditions (C1)-(C2). Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, generated by Algorithm 1, are converges strongly to $p^{*} \in$ $E P(f, \mathbb{C})$. Moreover, $\lim _{n \rightarrow+\infty} P_{E P(f, \mathbb{C})}\left(x_{n}\right)=p^{*}$.

1. Blum E., Oettli W. From optimization and variational inequality to equilibrium problems. Math. Stud, 1994, 63, 127-149.
2. Muu L. D., Oettli W. Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal, 1992, 18, 1159-1166.
