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Consider the equilibrium problem EP (f ; C) as follows

find x ∈ C such that f(x, y) ≥ 0, ∀y ∈ C,

where C is a nonempty, closed and convex subset of a real linear space E, f : C × C → R be
a bifunction. We denote by E∗ the dual of E. Muu and Oettli are first one introduced the
term of the equilibrium problem in 1992 ([2]) and has been extended by Blum and Oettli ([1]).
The problems EP (f ; C) have a number of interesting explanations and are related to many
branches of pure and applied mathematics : variational inequality and fixed point problems,
nonlinear optimization. The problems EP (f ; C) is also considered as a generalization of the
convex minimization problems. The special case, if f(x, y) =< Ax, y−x >, where A : E → E∗,
the equilibrium problem is just the variational inequality problem V I(A;C) which gives by

find x ∈ C such that < Ax, y − x >≥ 0, ∀y ∈ C.

Let h : E → R be a convex differentiable. The Bregman distance is the bifunction

Dh : dom(f)× int(dom(h)) −→ [0,+∞) ,

which is defined by
Dh(x, y) := h(x)− h(y)− < ∇h(y), x− y > .

Here h : E → R is differentiable, continuous and strongly convex with constant σ > 0, i.e.,

h(x)− h(y) ≥ 〈∇h(y), y − x〉+ σ

2
‖x− y‖2 .

In general, the Bregman distance is not symmetric and the triangle inequality does not hold.
However, it is also considered a generalization of some well-known distances. It is also called
the three point identity: for any x ∈ dom(f) and y, z ∈ int(dom(f))

Dh(x, y) +Dh(y, z)−Dh(x, z) =< ∇h(z)−∇h(y), x− y > .

From the strong convexity of h, we have

Dh(x, y) ≥
σ

2
‖x− y‖2 , ∀x, y ∈ C.

In this talk, by using Bergman distance, we introduce iterative extension of the Popov’s
subgradient extragradient method for solving strongly pseudomonotone equilibrium problems.
Let the bifunction f : E × E → R satisfies the following conditions

(C1) f(x, x) = 0, for all x ∈ C and f is strongly pseudomonotone on C, i.e.,

f(x, y) ≥ 0⇒ f(y, x) ≤ −γ ‖x− y‖2 , ∀x, y ∈ C
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(C2) f is Bregman-Lipschitz-type condition, i.e., there exist two positive constants c1, c2, such
that

f(x, y) + f(y, z) ≥ f(x, z)− c1Dh(y, x)− c2Dh(z, y), ∀x, y, z ∈ C.

(C3) f(x, ·) is convex and subdifferentiable on E for each fixed x ∈ E. Using the concept of
Bregman distance, we introduce our method.

Algorithm 1. (The Bergman Popov’s subgradient extragradient method for SPEP)

Choose x0, y0 ∈ H, and a sequence {λn} satisfying the following conditions

(Cd1): lim
n→+∞

λn = 0 and (Cd2):
+∞∑
n=1

λn = +∞.

Set
x1 = argmin

y∈C
{λ0f(y0, y) +Dh(y, x0)}

y1 = argmin
y∈C

{λ1f(y0, y) +Dh(y, y0)}

Iterative steps: Given xn, yn−1, and yn for n ≥ 1. Construct a half-space

Hn = {z ∈ H : 〈∇h(xn)− λnvn−1 −∇h(yn), z − yn〉 ≤ 0} ,

where vn−1 ∈ ∂2f(yn−1, yn).
Step 1: Compute

xn+1 = argmin
y∈Hn

{λnf(yn, y) +Dh(y, xn)} ,

Step 2: Compute

yn+1 = argmin
y∈C

{λn+1f(yn, y) +Dh(y, xn+1)} .

If xn+1 = xn = yn, then we stop. Otherwise, set n := n+1 and go to the Iterative steps.

Lemma 1. For all p∗ ∈ EP(f,C), the following inequality holds

Dh(p
∗, xn+1) ≤ Dh(p

∗, wn)−(1+λnc2)Dh(zn, yn)−Dh(yn, wn)−c1λnDh(yn, yn−1)−γλn ‖yn − p∗‖2 .

Theorem 1. Let f : H × H → R be a bifunction satisfying the conditions (C1)–(C2).
Then the sequences {xn} and {yn}, generated by Algorithm 1, are converges strongly to p∗ ∈
EP(f,C). Moreover, lim

n→+∞
PEP (f,C)(xn) = p∗.
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